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Several investigations have been devoted to determination of the optimum forms of the 
cross sections of isotropic prismatic rods. The following theorem was proposed in [i] and 
proved in [2]: With a specified cross-sectional area, a circular rod will have the greatest 
torsional rigidity. This result was generalized in [3] to the case of rods with a cavity: 
With known values of cross-sectional area and the area enveloped by the internal contour, 
a rod with a cross section in the form of a circular ring will have the greatest torsional 
rigidity. 

The optimality condition was obtained in [4, 5] for the problem of determining the form 
of the cross section of a rod that would yield the greatest torsional rigidity for a given 
cross-sectional area. This made it possible, in turn, to solve the problem of finding the 
form of the cross section of a rod with a cavity so as to give the rod its maximum torsional 
rigidity in the case when the cross-sectional area is specified along with one of the bound- 
ary contours, which is not a circle [4-7]. 

Solutions were found in [8, 9] for problems concerning optimization of one of the param- 
eters of a prismatic rod: cross-sectional area, torsional rigidity, or flexural rigidity, 
with limitations on the other two parameters. The problem of determining the form of the 
cross section of a rod to yield the maximum torsional rigidity with a given flexural rigid- 
ity was examined in [I0, ii]. It was shown that the optimum rod cross sections in these 
problems are circular or elliptical. 

Here we generalize the results in [8, i0, Ii] to the case of rods with a doubly connect- 
ed cross section. 

I. We will examine the problem of determining the form of the cross section of an iso- 
tropic prismatic rod occupying a doubly-connected region ~ (see Fig. i) that will yield the 
maximum torsional rigidity with specified axial moments of inertia for the cross section 
(flexural rigidities) 

and a fixed area F of the region D enveloped by the internal boundary contour Lx: 

S ] dxdy = F" (1.2) 

D 

We introduce a stress function during torsion ~(x, y) [12] which satisfies the equation 

L 

Fig. 1 
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and b o u n d a r y  conditions 

= C ( x , y ) ~  L~  ~ = 0 (x, y ) ~  L~, 

where the constant C is determined from the Bredt condition 

( 1 . 3 )  

(1.4) 

2F = - .~ q%ds. ( 1 . 5  ) 

L 1 

The derivative of r y) with respect to a normal to the contour is designed through 

q)n. 

In accordance with [4, 5], the above-formulated optimization problem can be :formulated 
as a variational problem on the stationary value of a functional 

( 1 . 6  ) 

in the regions fl and D with corresponding movable boundaries L I + L2, L l in the case of bound- 
ary conditions (1.4). 

Here, 11, 12, 13 are Lagrangian constant multipliers subject to determination~ 

With allowance for (1.4), the condition of stationariness of functional (1.6) corres- 
ponds to Eq. (1.3) and, due to the variation of Ll and L2, the optimality conditions deter- 
mining the form of the boundary contours: 

k2x -~Z3-~-40=0 (x, y )~  L1, 

~ -6 k ly  2 +. k2z: = 0 (z, y) ~= L: .  
( 1 . 7 )  

Conditions (1.7) are satisfied for a rod cross section bounded by two geometrically sim- 
ilar ellipses. In fact, the stress function in torsion ~(x, y) satisfying Eq. (1.3) for such 
a section has the form [13] 

= --rz~ + ( r - -  I)U ~ + t (~,y) ~ L , +  ~ + L~, ( 1 . 8 )  

where 0 < r < i, t > C > 0 are constants. The stress function will satisfy boundary condi- 
tions (1.4) for a section with a boundary specified by the equations 

y = =  [ - - rx~- t  - (t - -  C)]l(l  - - r )  

y= = ( - - r x 2 +  t)/(t  - - r )  
(z, y) ~ L1, ( 1 . 9 )  
(z, g) ~ L~, 

describing geometrically similar ellipses. The constant C, obtained from (1.5), has the form 

C = t - -  F [ r ( t  - -  r)l l l2/m (1.10) 
In this case, 

q ~  = 4 [r  (2r  - -  i )  x z -~- (t - -  C) ( f  - -  r)]  

q~,2 a = 4 [r (2r - -  I) .i ~ ~- t (~ - -  r)] 

(z, y) ~ Lx, 

(x, y) ~ L 2 

and conditions (1.7) are satisfied as a result of unambiguous selection of the constants 

LI=: --4(I - -  r) ~, %~ = --4r ~, ks = --4C. 

The parameters r and t in solution (1.8)-(1.10) are determined by the well-known quanti- 
ties of (I.i) and (1.2): 

r = ~/(t + ~), ~ =  ~ i ~ i ( ~  -k ~), 
= J x l ] y ,  R = [ 4 ~ ( ] J y ) V 2 - I . F ~ I V V ~ .  (i.ii) 
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The torsional rigidity of the rod (to within the multiplier G, which is the shear stiff- 
ness of the material) 

for an optimum cross section does not depend on the specified area of the hole F: 

Kop t =4JXJV/(J-5Jy). 

We u s e  ( 1 . 9 )  and  ( 1 . 1 1 )  t o  f i n d  t h e  s e m i a x e s  o f  t h e  e x t e r n a l  e l l i p s e  a a nd  b a l o n g  t h e  
a x e s  Ox and  0y :  

a = BI/~-I/~, b : BI/~I/a. (1.12) 

The corresponding semiaxes of the internal contour cross section geometrically similar to 
the external section are equal to aa and ab, where 0 & ~ ~ 1 is a parameter equal to 

a = [FI(B~)]I/~. (1.13) 

In accordance with (i.i~), the ratio of the semiaxes of the boundary contours of the 
elliptical sections a/b = ~-~ depends only on the ratio of the required flexural rigidities. 

Assuming that F = 0 in the resulting solution, i.e., that there is no lengthwise cavity 
in the rod, we arrive at the case of a singly-connected section: The maximum torsional rigid- 
ity for given flexural rigidities corresponds to a rod with a cross section bounded by an 
ellipse. This finding is in agreement with the theory proven in [i0]. 

Let us examine the problem of determining the form of the cross section of a rod with 
a cavity on the condition that one of the axial moments of inertia - say Jx - be maximal for 
known values of the other moment Jy, torsional rigidity K, and the area F of the cross sec- 
tion of the cavity (1.2). 

This problem is related to the problem examined previously. The optimality conditions 
determining the form of the boundary contours of the cross section differ from (1.7) only 
in the corresponding permutation of the Lagrangian multiplier lz, and the solution of the 
problem is satisfied by functions (1.8)-(1.10). The parameters r and t are expressed through 
the specified quantities Jy, K, and F, as follows: 

r = 1/(~ + ~D, t  = ~Q~/~I[~(I + ~)1, 
? : [(4Jy --  g)/g]l /2 ,  Q = 4~Jy /y  + F ~. ( 1 . 1 4 )  

We find from (1.14) that the existence of a solution requires that the given values of 
Jy and K satisfy the inequality 

K < 4J u. (1.15) 

If Jy < Jx, then K < 4Jy for rods with a singly-connected cross section and, thus, also 
for rods with a cross section bounded by two geometrically similar ellipses [12]. Consequent- 
ly, condition (1.15) is not an additional condition for the existence of the solution. Only 
an actual relationship between the specified values of K and Jy is required. 

Thus, a cross section bounded by two geometrically similar ellipses is the form of the 
cross section of a rod with a cavity that will have the greatest flexural rigidity for given 
values of the other flexural rigidity and torsional rigidity satisfying the inequality (1.15) 
and a given value of the cross-sectional area of the cavity. 

The semiaxes of the external boundary ellipse a and b, the ratio of the dimensions of 
the internal and external geometrically similar contours a, and the value of the moment Jx 
being optimized have the form 

a = Q1/~(7/g)l/~, a/b ~ 7, ~ = F1/2/Q1/a, Jxopt = jy/?2.  

A s s u m i n g  t h a t  Y = 0 ,  we a r r i v e  a t  t h e  c a s e  o f  a s o l i d  r o d :  A r o d  w i t h  an  e l l i p t i c a l  
c r o s s  s e c t i o n  w i l l  h a v e  t h e  g r e a t e s t  f l e x u r a l  r i g i d i t y  f o r  f i x e d  v a l u e s  o f  t h e  o t h e r  f l e x u r a l  
r i g i d i t y  and  t o r s i o n a l  r i g i d i t y  s a t i s f y i n g  c o n d i t i o n  ( 1 . 1 5 ) .  
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2. Let us examine the problem of determining the form of the cross section of a pris- 

matic rod with a cavity having a minimum cross-sectional area 

S = S I d x d y  ( 2 , 1 )  
a 

with specified values of the axial moments of inertia (i.i) and the cross-sectional area of 
the cavity (1.2). 

The optimality conditions have the form 

I -~ ~ly 2 -t- ;%x: -}- ;% = 0 (x, y) ~ L~, 

t -t- )~,'J" @ X.,x" = 0 (x, y) ~ L2, 

where X i, X 2 ,  and X3 are constants subject to determination. The solution of the problem is 
satisfied by a rod cross section bounded by two geometrically similar ellipses. The parameters 
of the cross section are determined by the quantities Jx, Jy, and F from Eqs. (1.12)-(1.13). 

The cross-sectional area of the optimum rod 

Sop t =.[4~(]xJy)l/~ + f~ll/~ - -  F 

with constant Jx and Jy decreases with an increase in the specified area of the hole F. 

It should be noted that the optimum rods obtained correspond not only to a minimum cross- 
sectional area, but also to a maximum torsional rigidity with the same limitations (1.1)-(1.2). 

The solution of the related optimization problem - the problem of determining the form 
of the cross section of a rod so as to maximize one of the axial moments of inertia, such 
as Jx, with specified values of S, Jy, and F - is also a cross section bounded by two geo- 
metrically similar ellipses: 

a 4n.fzt fS(S @ F) (S ~- 2F)] 172 
? - -  b - - S ( S - r - 2 F ) '  b = -  , )~]U2 ' 

c~ = F/(F q- S), Jxopt = J~t / ?2. 

Assuming F = 0 in these problems, we arrive at the case of solid rods, and the optimum 
sections will be elliptical. 

3. We will study the problem of determining the form of the cross section of a rod having 
a lengthwise cavity with the goal of minimizing the cross-sectional area S (2.1)with limitations 
on torsional rigidity K and on one of the axial moments of inertia (flexural rigidity), such 
as Jx : 

and with a fixed area F enveloped by the internal contour L i of the cross section (see Fig. 
i). 

Following [8], we first examine the problem of minimizing S with only a limitation on 
torsional rigidity. Then a rod with a cross section in the form of a circular ring will have 
the smallest cross section with specified values of torsional rigidity K = K 0 and the area 
of the hole F. The radii of the ring 

R1-- (F /~) I /2 ,  R2 = [2Ko/~ ~( f /~)2p /4  ( 3 . 2 )  

The values of K and Jx for such a rod are connected by the relation K = 2Jx. 

If the constants K 0 and J0 in limitations (3.1) satisfy the inequality 

K0 > 2J0, (3.3) 

then, as before, the optimum rod will be one with a cross section in the form of a circular 
ring in the problem of minimizing S with limitations (3.1) and a specified value of F, since 
in this case K = K0, Jx ~ J0. The radii of the ring are determined by the parameters K0 and 
F from equations (3.2). 
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If the specified parameters K 0 and J0 violate condition (3.3) (K 0 < 2J0) , then both limi- 
tations (i.i) turn out to be significant in finding the optimum form of the cross section. 
Replacing limitations (3.1) by absolute equalities, we reduce the optimization problem to 
a variational problem on the stationary value of the functional 

�9 2 2 2 

D 

The optimality conditions obtained due to variation of the boundaries of the regions 
and D have the form 

23_ 

2 I + ~1% + k,y" = 0 (z, y) ~ L 2. 
(3.4) 

Conditions (3.4)are satisfied for a rod cross section bounded by two geometrically sim- 
ilar ellipses. The solution of the problem is determined by the functions (1.8)-(1.10), 
where the parameters r and t depend on the quantities K0, J0, and F: 

The semiaxes of the external boundary ellipse a and b, the ratio of the dimensions 
of the internal and external geometrically similar contours, and the value of the optimum 
area of the cross section S have the form 

11 = "~, b - -  (4~"~J o "t" F2 )  114 

b (ay) l /2  ' 

t (F I1 / 2  ' 
= T Sop  = o + v.  

Two other optimization problems are related to the above-examined problem. The first 
consists of maximizing the torsional rigidity K of a rod having a doubly-connected cross sec- 
tion with limitations on the area (2.1) and on one of the axial moments of inertia of the 
cross section 

s ~  So, J~ ~ Jo. (3.5)  

The second problem entails maximization of the flexural rigidity (axial moment of in- 
ertia Jx) with limitations on the cross-sectional area and torsional rigidity 

S < So, K ~ Ko. ( 3 . 6 )  

It is also assumed that in these problems we know the area F enveloped by the internal 
boundary contour of the cross section. 

Let us return to the first problem. If we do not consider the limitation Jx ~ J0 in 
(3.5), then with specified values of the cross-sectional area S and the area of the hole F, 
the maximum torsional rigidity K will correspond to a rod cross section in the form of a cir- 
cular ring [3]. The values of S and Jx for such a ring are connected by the relation 

i - ~  ~ S~, ~ _  F 
J~--(t--~2)4~ S q-F 

If the specified values of S O and J0 satisfy the inequality 

Jo< I+,~ 2 S~, (3 7) 
(1-  ~)4a 

then the optimum cross section will again be in the form of a circular ring (here, S = So, 
Jx ~ J0). The radii of the boundary circles R 1 = (F/n)�89 R 2 = [(S o + F)/~]~. 

If the parameters So and J0 do not satisfy Eq. (3.7), then determination of the optimum 
form of the cross section requires consideration of the limitation on flexural rigidity as 
well. It can be shown that the solution of the problem in this case is satisfied by a rod 
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cross section bounded by two geometrically similar ellipses. Meanwhile, exact equalities 
are taken in (3.5). The parameters of the boundary ellipses a, b, and a and the torsional 
rigidity of the optimum rod are determined by the quantities J0, So, and F: 

-1- So)  ~2 l~' = 430 - - - - - 7 .  ,~ ~r (so + 2e:~ b -- ~:opt 

Let us examine the second problem. Both limitations (3.6) are considered in the problem 
of maximizing flexural rigidity when determining the optimum form of the cross section. Re- 
placing the inequalities in (3.6) by absolute equalities, we find that the solution of the 
problem is again satisfied by a rod with a cross section bounded by two geometrically similar 
ellipses: 

6 [~ _ ( ~  ~ ) ~ / 2 ] ,  ~ _ So (s  o + 2F) 
V = T - 2-~ -- K 0 ' 

= C - - ~ - J  (S~ + e t11~, ~ _ So r+ ~' S~op~ - s~ (s~ + 2e) ( 3 .8  ) 

We find from (3.8) that the problem has a solution with the following limitation on the 
specified parameters K0, So, and F: 

Ko~ [So(So + 2F)]/2~. (3 .9 )  

Limitation (3.9) has the following physical meaning: The specified torsional rigidity 
K 0 must not exceed the torsional rigidity of a rod with a cross section in the form of a cir- 
cular ring having an area S O and a hole with an area F. 
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